문제 : 도시 분할 계획
동물원에서 막 탈출한 원숭이 한 마리가 세상구경을 하고 있다. 그러다가 평화로운 마을에 가게 되었는데, 그곳에서는 알 수 없는 일이 벌어지고 있었다.
마을은 N개의 집과 그 집들을 연결하는 M개의 길로 이루어져 있다. 길은 어느 방향으로든지 다닐 수 있는 편리한 길이다. 그리고 각 길마다 길을 유지하는데 드는 유지비가 있다.
마을의 이장은 마을을 두 개의 분리된 마을로 분할할 계획을 가지고 있다. 마을이 너무 커서 혼자서는 관리할 수 없기 때문이다. 마을을 분할할 때는 각 분리된 마을 안에 집들이 서로 연결되도록 분할해야 한다. 각 분리된 마을 안에 있는 임의의 두 집 사이에 경로가 항상 존재해야 한다는 뜻이다. 마을에는 집이 하나 이상 있어야 한다.
그렇게 마을의 이장은 계획을 세우다가 마을 안에 길이 너무 많다는 생각을 하게 되었다. 일단 분리된 두 마을 사이에 있는 길들은 필요가 없으므로 없앨 수 있다. 그리고 각 분리된 마을 안에서도 임의의 두 집 사이에 경로가 항상 존재하게 하면서 길을 더 없앨 수 있다.
문제
마을의 이장은 위 조건을 만족하도록 길들을 모두 없애고 나머지 길의 유지비의 합을 최소로 하고 싶다. 이것을 구하는 프로그램을 작성하시오.
입력 조건
•
첫째 줄에 집의 개수 N, 길의 개수 M이 주어진다. N은 2이상 100,000이하인 정수이고, M은 1이상 1,000,000이하인 정수이다.
•
그 다음 줄부터 M줄에 걸쳐 길의 정보가 A B C 세 개의 정수로 주어지는데 A번 집과 B번 집을 연결하는 길의 유지비가 C (1 ≤ C ≤ 1,000)라는 뜻이다.
출력 조건
•
첫째 줄에 없애고 남은 길 유지비의 합의 최솟값을 출력한다.
입력 예시
7 12
1 2 3
1 3 2
3 2 1
2 5 2
3 4 4
7 3 6
5 1 5
1 6 2
6 4 1
6 5 3
4 5 3
6 7 4
Python
출력 예시
8
Python
풀이
해결에 필요한 핵심 아이디어: 크루스칼 알고리즘, 2개의 신장 트리!
해결 시나리오
•
크루스칼 알고리즘으로 최소 신장 트리를 만든 후, 어떻게 두 개로 분할할 것인가?
→ 전체 비용에서 가장 큰 간선의 비용을 빼주면 간단히 해결!
답안